Taylor Expansions of q−Pochhammer Symbols via the Leverrier–Takeno Method

Authors

  • Juan José Diaz Bulnes Department of Exact and Technological Sciences, Federal University of Amapá, Rod. J. Kubitschek, 68903-419, Macapá, AP, Brazil. https://orcid.org/0000-0003-4367-0453
  • Irfan Nurhidayat Department, International Engineering and Technology Institute, Hong Kong, China. https://orcid.org/0000-0002-2655-949X
  • Mahmood Ahmad Pathan Department of Mathematics, Aligarh Muslim University, Aligarh, India-202 002.
  • Hemant Kumar Department of Mathematics, D. A-V. Postgraduate College, Kanpur, Uttar Pradesh, India-208 001.
  • José Luis López-Bonilla ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México.

DOI:

https://doi.org/10.22105/kmisj.v2i1.88

Keywords:

Characteristic polynomial, q−binomial theorem, Leverrier-takeno’s procedure, Taylor expansion, Complete bell polynomials, Partition function, Newton’s recurrence expression, q−series, Jacobi triple product identity

Abstract

This article presents a new approach to the study of generalized q−Pochhammer symbols through the Leverrier–Takeno method. By linking the derivatives of these products to the coefficients of characteristic polynomials, the work provides a systematic framework for constructing Taylor expansions in terms of combinatorial objects such as Bell polynomials and q−binomial coefficients. The method naturally leads to several well-known results in q−series, including the q−binomial theorem, Euler’s identity, and the Jacobi triple product identity. In addition, the approach reveals close connections with partition functions and recurrence relations, offering new perspectives on classical number theoretic results. The findings highlight the effectiveness of combining linear algebraic methods with combinatorial techniques to deepen the understanding of q−series and their applications in mathematics.

References

Hei-Chi Chan (2011). An invitation to q−series: From Jacobi’s triple product identity to Ramanujan’s “most beautiful identity".

World Scientific, Singapore.https://books.google.com/books

Johnson, W.P. (2020). An Introduction to q−Analysis. Am. Math. Soc., Providence, Rhode Island,

USA.https://books.google.com/books

Jacobi, C.G.J. (1829). Fundamenta Nova Theoriae Functionum Ellipticarum. Sumptibus Fratrum Bornträger,

Regiomonti.https://books.google.com/books

Hirschhorn, M.D. (2017). The Power of q. A Personal Journey. Springer, Switzerland.

Horn, R.A. & Johnson, Ch. R. (2013). Matrix Analysis. Cambridge University Press.

Lanczos, C. (1988). Applied Analysis. Dover, New York.https://books.google.com/books

López-Bonilla, J., Vidal-Beltrán, S. & Zúñiga-Segundo, A. (2018). Characteristic equation of a matrix via Bell polynomials.

Asia Mathematika, 2(2), 49–51.http://www.asiamath.org/issue1/AM-1904-3103.pdf

Leverrier, U.J.J. (1840). Sur les variations séculaires des éléments elliptiques des sept planétes principales. J. de Math. Pures

Appl. Série (1), 5, 220–254.https://www.numdam.org/item/JMPA_1840_1_5__220_0.pdf

Takeno, H. (1954) A theorem concerning the characteristic equation of the matrix of a tensor of the second order. Tensor NS,

, 119–122.

Wilson, E.B., Decius, J.C. & Cross, P.C. (1980). Molecular Vibrations. Dover, New York, 216–217.

Bulnes, J.D., Islam, N. & López-Bonilla, J. (2022). Leverrier-Takeno and Faddeev-Sominsky algorithms. Scientia Magna, 17(1),

–84.https://sig-cdn.unifap.br/arquivos/2023189017d2c367821401a682359756/Leverrier-Takeno_and_Faddeev-Sominsky_al-gorithms.pdf

Guerrero-Moreno, I., López-Bonilla, J. & Rivera-Rebolledo, J. (2011). Leverrier-Takeno coefficients for the characteristic

polynomial of a matrix. J. Inst. Eng. (Nepal), 8(1-2), 255–258.https://nepjol.info/index.php/JIE/article/download/5118/4254

Brown, L.S. (1994). Quantum Field Theory. Cambridge University Press.https://books.google.com/books

Curtright, T.L. & Fairlie, D.B. (2012). A Galileon Primer. arXiv: 1212.6972v1 [hep-th] 31

Dec.https://doi.org/10.48550/arXiv.1212.6972

López-Bonilla, J., López-Vázquez, R. & Vidal-Beltrán, S. (2018) . An alternative to Gower’s inverse matrix. World Scientific

News, 102, 166–172.https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-be0117c6-c40e-454d-bafa-76a3db0e80f0

Riordan, J. (1968). Combinatorial Identities. John Wiley and Sons, New York.

Comtet, L. (1974). Advanced Combinatorics. D. Reidel Pub., Dordrecht, Holland.

Connon, D.F. (2010). Various Applications of the (Exponential) Complete Bell Polynomials.

http://arxiv.org/ftp/arxiv/papers/1001/1001.2835.pdf 16 Jan.

López-Bonilla, J., López-Vázquez, R. & Vidal-Beltrán, S. (2018). Bell polynomials. Prespacetime J., 9(5), 451–453.

López-Bonilla, J., Vidal-Beltrán, S. & Zúñiga-Segundo, A. (2018). On certain results of Chen and Chu about Bell polynomials.

Prespacetime J., 9(7), 584–587.

López-Bonilla, J., Vidal-Beltrán, S. & Zúñiga-Segundo, A. (2018). Some applications of complete Bell polynomials. World Eng.

& Appl. Sci. J., 9(3), 89–92.

Pathan, M.A., Kumar, H., López-Bonilla, J. & Sherzad Taher, H. (2023). Identities involving generalized Bernoulli numbers

and partial Bell polynomials with their applications. Jnanabha, 53(1), 272–276.

Johnson, W.P. (2002). The curious history of Faà di Bruno’s formula. The Math. Assoc. of America, 109, 217–

https://www.tandfonline.com/doi/abs/10.1080/00029890.2002.11919857

Csanky, L. (1976). Fast parallel matrix inversion algorithm. SIAM J. Comput. 5, 618–

https://doi.org/10.1109/SFCS.1975.14

López-Bonilla, J., Lucas-Bravo, A. & Vidal-Beltrán, S. (2019). Newton’s formula and the inverse of a triangular matrix. Studies

in Nonlinear Sci., 4(2), 17–18.

Wang, G., Wei, Y. & Qiao, S. (2018) Generalized Inverses: Theory and Computations, Springer,

Singapore.https://link.springer.com/content/pdf/10.1007/978-981-13-0146-9.pdf

Faddeev, D. K. & Sominsky, I. S. (1949). Collection of Problems on Higher Algebra. Moscow.

Faddeeva, V.N. (1959). Computational Methods of Linear Algebra. Dover, New York.https://www.sidalc.net/search/Record/KOHA-OAI-TEST:9312/Description

Faddeev, D.K. (1963). Methods in Linear Algebra. W. H. Freeman, San Francisco, USA.

Gower, J.C. (1980). A modified Leverrier-Faddeev algorithm for matrices with multiple eigenvalues. Linear Algebra and its

Applications, 31(1), 61–70.https://doi.org/10.1016/0024-3795(80)90206-2

Helmberg, G., Wagner, P. & Veltkamp, G. (1993). On Faddeev-Leverrier’s method for the computation of the characteristic

polynomial of a matrix and of eigenvectors. Linear Algebra and its Applications, 185, 219–233.https://core.ac.uk/download/pdf/81192811.pdf

Shui-Hung Hou (1998) On the Leverrier-Faddeev algorithm. Electronic Proc. of Asia Tech. Conf. in

Maths.https://atcm.mathandtech.org/EP/1998/ATCMP002/paper.pdf

Shui-Hung Hou (1998). A simple proof of the Leverrier-Faddeev characteristic polynomial algorithm, SIAM Rev., 40(3),

–709.https://doi.org/10.1137/S003614459732076X

López-Bonilla, J., Morales, J., Ovando, G. & Ramírez, E. (2006). Leverrier-Faddeev’s algorithm applied to spacetimes of class

one. Proc. Pakistan Acad. Sci., 43(1), 47–50.https://paspk.org/wp-content/uploads/proceedings/43%20No.%201/a6fac9cf43-1-P47

-50.pdf

Caltenco, J. H., López-Bonilla, J. & Peña-Rivero, R. (2007). Characteristic polynomial of A and Faddeev’s method for A-1,

Educatia Matematica, 3(1-2), 107–112.http://www.cpgg.ufba.br/pessoal/reynam/Curso_HPC_2016_1/projetos/Faddeev.pdf

López-Bonilla, J., Torres-Silva, H. & Vidal-Beltrán, S.(2018). On the Faddeev-Sominsky’s algorithm. World Scientific News,

, 238-244.https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-81a39821-7ea1-4591-9a41-2f539d8131ae

http://mobiusfunction.wordpress.com/2010/08/07/the-inverse-of-a-triangular-matrix

López-Bonilla, J. & Miranda-Sánchez, I. (2020). Inverse of a lower triangular matrix, Studies in Nonlinear Sci., 5(4), 57–

https://idosi.org/sns/5(4)20/4.pdf

http://mobiusfunction.wordpress.com/2010/12/08/the-inverse-of-triangular-matrix-as-a-binomial-series/

Malenfant, J. (2011). Finite, Closed-Form Expressions for the Partition Function and for Euler, Bernoulli and Stirling

Numbers. arXiv: 1103.1585v6 [math.NT] 24 May 2011. https://arxiv.org/abs/1103.1585

López-Bonilla, J. & Vidal-Beltrán, S. (2021). On the Jha and Malenfant formulae for the partition function. Comput. Appl.

Math. Sci., 6(1), 21–22.

Bulnes, J. D., Kim, T., López-Bonilla, J. & Vidal-Beltrán, S. (2023). On the partition function. Proc. Jangjeon Math. Soc.

(1), 1–9.https://www.researchgate.net

Berkovich, A. & Uncu, A. K. (2019) Elementary polynomial identities involving q-trinomial coefficients. Annals of Combinatorics,

, 549–560.https://doi.org/10.1007/s00026-019-00445-8

Hirschhorn, M. D. (1999) Another short proof of Ramanujan’s mod 5 partition congruences, and more. Amer. Math. Monthly,

(6), 580–583.https://doi.org/10.1080/00029890.1999.12005087

http://mathworld.wolfram.com/PartitionFunctionP.html

Birmajer, J. B. Gil, Weiner, M. D. (2014) Linear Recurrence sequences and their convolutions via Bell polynomials. arXiv:

7727v2 [math.CO] 26 Nov.https://doi.org/10.48550/arXiv.1405.7727

Vein, R. & Dale, P. (1999). Determinants and Their Applications in Mathematical Physics, Springer-Verlag, New York.

Gould, H. W. (2010). Combinatorial Identities. Table I: Intermediate Techniques for Summing Finite Series. Edited and

compiled by J. Quaintance, May 3.

Published

2025-03-11

Issue

Section

Articles

How to Cite

Diaz Bulnes, J. J., Nurhidayat, I. ., Pathan, M. A., Kumar, H. ., & López-Bonilla, J. L. (2025). Taylor Expansions of q−Pochhammer Symbols via the Leverrier–Takeno Method. Karshi Multidisciplinary International Scientific Journal, 2(1), 51-59. https://doi.org/10.22105/kmisj.v2i1.88

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.