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Abstract

This article investigates the regular solvability of boundary value problems for second-order elliptic
operator-differential equations with discontinuous coefficients and non-standard boundary conditions
in a Hilbert space setting. The authors focus on operator equations defined over a finite interval and
aim to identify the structural and spectral conditions under which these problems admit unique, stable
solutions. They construct the problem using self-adjoint and positively defined operators, incorporating
piecewise-constant coefficients and boundary operators. The study introduces a specialized function
space to accommodate the differential and boundary conditions and establishes conditions ensuring the
existence, uniqueness, and continuity of solutions with respect to input data. By analyzing the properties
of associated linear operators and leveraging classical results from functional analysis, such as the Banach
inverse operator theorem, the authors demonstrate that the solution operator is bounded and invertible
under specific spectral constraints. This work contributes to the theoretical understanding of elliptic
operator-differential equations and provides valuable tools for further analysis in mathematical physics,
engineering, and applied mathematics contexts where such boundary value problems frequently arise.
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1|Introduction
Boundary value problems for operator-differential equations have emerged as one of the central topics in the
study of functional analysis and partial differential equations due to their wide applicability in theoretical and
applied sciences. These problems, particularly in the context of second-order elliptic operators, arise naturally in
physics, engineering, and mathematical modeling of various diffusion, elasticity, and wave propagation processes.
The mathematical challenges associated with such problems become even more pronounced when the equations
involve discontinuous coefficients, complex boundary conditions, and are posed in infinite-dimensional Hilbert
spaces. The development of the theory for boundary value problems involving elliptic operator-differential
equations has a rich history. Fundamental groundwork was laid by Krein [12], Dubinsky [7], and Yakubov [21],
who investigated differential equations in Banach and Hilbert spaces. These studies introduced the analytical
machinery necessary to work with abstract differential operators and their spectral properties. Subsequent
contributions by Lions and Magenes [13] further established the role of boundary conditions in determining the
solvability and regularity of such problems. Their work emphasized the importance of compatibility conditions
between operator domains and boundary spaces, which laid the foundation for later generalizations. In particular,
the solvability of elliptic equations with operator coefficients has been thoroughly explored by researchers such as
Agayeva [1]-[3], Mirzoyev [14, 15, 19], and Aliyev [4, 5]. These studies considered boundary value problems where
the boundary conditions themselves include operator terms, making the problem more intricate. They introduced
the concept of regular solvability, which guarantees that for every suitable input (forcing term), a unique solution
exists that continuously depends on the input. This notion is crucial in ensuring the stability of solutions and
their practical applicability. The use of Hilbert space settings in such investigations allows for a more general
and flexible framework. The inner product structure of Hilbert spaces enables the deployment of powerful tools
such as spectral theory, compactness arguments, and energy estimates. Within this framework, the study of
operator-differential equations with discontinuous or piecewise constant coefficients becomes tractable, especially
when combined with appropriate function spaces and domain characterizations, as explored by Gasimov [8],
Gasimova [9, 10], and others. Despite the progress, there remain significant challenges in fully characterizing
the solvability of such equations, particularly when the coefficients exhibit discontinuities or when boundary
operators act between different scales of Hilbert spaces. The introduction of discontinuous coefficients, for
example, reflects physical scenarios such as media with layered or composite structures, where the governing
equations change behavior at interface points. Such complexity necessitates refined analytical techniques and
carefully constructed function spaces, such as weighted Sobolev spaces or abstract interpolation spaces, which
accommodate the irregular behavior of solutions.

The present study, aims to contribute to this ongoing development by examining a class of second-order elliptic
operator-differential equations defined on a finite interval, where the principal part of the operator is accompanied
by lower-order terms, and the boundary conditions are non-classical and include operator expressions. The key
novelty of the paper lies in identifying sufficient spectral and structural conditions under which the boundary
value problem is regularly solvable. In other words, it ensures that the associated solution operator is bounded
and invertible, and that the solutions depend continuously on the given data in the appropriate norm. Building
on earlier work by Aghayeva [1]-[3] and her collaborators [14, 15], this paper extends the theory to settings
where the boundary operators may not be self-adjoint or compact, and the coefficients may exhibit jumps or
discontinuities. It also incorporates recent advances in the use of interpolation theory and operator semigroups, as
discussed by researchers such as Gorbacuk and Gorbacuk [11], and Mirzoyev et al. [16]-[18]. The authors provide
rigorous proofs demonstrating that under appropriate inequalities involving the norms of the boundary operators
and spectral gaps of the principal operator, the problem admits a unique, stable solution. In addition, the
authors make use of functional analytic techniques such as the Banach inverse mapping theorem and energy-type
estimates to establish the main results. This approach not only guarantees existence and uniqueness but also
yields important a priori estimates for the solution. These estimates are crucial for numerical methods and
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applications, as they provide bounds on the solution in terms of the input data. In conclusion, this study
significantly enriches the current understanding of elliptic operator-differential equations with discontinuous
coefficients and operator boundary conditions. By establishing new solvability criteria and offering detailed
proofs within the Hilbert space framework, the paper contributes both theoretical insights and practical tools for
further exploration in the analysis of partial differential equations and their applications in mathematical physics.
This study builds upon recent advancements in numerical and analytical methods for solving differential and
integral equations. In particular, the comparison of numerical methods for solving ODEs, Volterra integral, and
integro-differential equations by Aghayeva et al. [22], and the comparative study of Adam’s methods with other
multistep approaches in initial-value problems by Shafiyeva et al. [23], provide a methodological backdrop for
addressing the regular solvability of operator-differential equations. Moreover, the utilization of pseudospectral
techniques for fractional equations, as demonstrated in the work by Liu et al. [24], and the exploration of the
Cauchy problem for higher-order elliptic equations by Niyozov et al. [25], underscore the ongoing relevance of
spectral properties and boundary behavior in complex differential models. These references collectively support
the framework and innovations presented in this paper.

Let H be a separable Hilbert space, A a positively defined self-adjoint operator in H with the domain of definition
D(A). Denote by Hα the scale of Hilbert spaces generated by the operator A, i.e. Hα = D(Aα) , (x, y)α =
(Aαx, Aαy) , x, y ∈ Hα , α ≥ 0. For α = 0 we assume H0 = H.

Let L2((0, T ); H) be the Hilbert space of all functionsf(t), defined almost everywhere on the interval (0, T ) with
values in H, such that

∥ f ∥L2((0,T );H) =
(∫ T

0
∥f(t)∥2

dt

) 1
2

< ∞.

Following the monographs [1, 2], we define the Hilbert space W 2
2 ((0, T ); H) = {u : u′′ ∈ L2((0, T ); H), A2u ∈

L2((0, T ); H)}

with the norm
∥ u ∥W 2

2 ((0,T );H) =
(

∥u′′∥2
L2((0,T );H) +

∥∥A2u
∥∥2

L2((0,T );H)

) 1
2

.

Similarly, the spaces L2(R; H) and W 2
2 (R; H), where R is the real line.

We introduce the following subspace of W 2
2 ((0, T ); H)

W 2
2,K((0, T ); H) = {u : u ∈ W 2

2 ((0, T ); H), u′(0) = Ku(0) , u′(T ) = 0},

where K ∈ L(H3/2, H1/2). Here, L(X, Y ) is the space of bounded linear operators acting from X into Y . In
what follows, derivatives are understood in the sense of distributions

Consider the boundary value problem in the space H

−u′′(t) + ρ(t)A2u(t) + A1u′(t) + A2u(t) = f(t) , t ∈ (0, T ), (1)

u′(0) = Ku(0), u′(T ) = 0, (2)
where f(t), u(t) are functions with values inH, and the operator coefficients satisfy the following conditions:

1. A is a positively defined self-adjoint operator in H;

2.ρ(t) =
{

α2 , t ∈ (0, t0) ,
β2 , t ∈ (t0, T ) , t0 ∈ (0, T ) , α > 0 , β > 0 ;

3.K ∈ L(H3/2, H1/2);
4. Bj = AjA−j is bounded in H , j = 1, 2.

Definition 1. If for f(t) ∈ L2((0, T ); H) there exists a vector-function u(t) ∈ W 2
2 ((0, T ); H), that satisfies

equation (1) almost everywhere on (0, T ), the u(t) is called a regular solution of equation (1).

Definition 2. If for any f(t) ∈ L2((0, T ); H) there exists a regular solution u(t) of equation (1) satisfying the
boundary conditions (2) in the sense of convergence

lim
t→+0

∥u′(t) − Ku(t)∥1/2 = 0 , lim
t→T −0

∥u′(t)∥1/2 = 0



and the inequality ∥ u ∥W 2
2 ((0,T );H) ≤ const ∥ f ∥L2((0,T );H) holds, then the problem (1), (2) is called regularly

solvable.

In this work, we provide sufficient conditions on the coefficients of the equation and the boundary conditions
which ensure regular solvability of problem (1), (2). It should be noted that boundary value problems for
elliptic operator-differential equations of second order are studied, for example, in works [1].

Let us denote:

P0u = −u′′ + ρ(t)A2u , P1u =
1∑

j=0
A2−ju(j), u ∈ W 2

2,K((0, T ); H)

and
Pu = P0u + P1u, u ∈ W2

2
,K((0, T ); H).

First, we investigate the solvability of Equation P0u = f .

2|Some Results
Lemma 1. Let conditions 1)–3) hold and ReA−1K ≥ 0 and H3/2. Then for any u ∈ W2

2
,K((0, T ); H) the

following inequality holds:

∥Au′∥2
L2((0,T );H) +

∥∥∥ρ1/2A2u
∥∥∥2

L2((0,T );H)
≤ Re(P0u, A2u)L2((0,T );H). (3)

Proof. After multiplying the equation P0u = f scalarly by the function A2u in space L2((0, T ); H) we have

−Re(u′′, A2u)L2((0,T );H) +
∥∥∥ρ1/2A2u

∥∥∥2

L2((0,T ):H)
= Re(P0u, A2u)L2((0,T );H).

After integration by parts, we obtain

Re(A1/2u′(0), A3/2u(0)) + ∥Au′∥2
L2((0,T );H) +

∥∥∥ρ1/2A2u
∥∥∥2

L2((0,T );H)
=

= Re(P0u, A2u)L2((0,T );H),

or
Re(A−1Ku(0), u(0))3/2 + ∥Au′∥2

L2((0,T );H) +
∥∥∥ρ1/2A2u

∥∥∥2

L2((0,T );H)
=

= Re(P0u, A2u)L2((0,T );H). (4)
Considering that ReA−1K ≥ 0 in H3/2, of equality (4) we obtain the statement of the lemma.

Corollary 1. Under the conditions of the lemma, the homogeneous equation P0u = 0 only the trivial solution.

Corollary 2. Under the lemma’s conditions, for any u ∈ W 2
2,K((0, T ); H) the following inequalities hold:∥∥A2u

∥∥
L2((0,T );H) ≤ 1

min(α2; β2) ∥P0u∥L2((0,T );H) ,

∥Au′∥L2((0,T );H) ≤ 1
2 min(α; β) ∥P0u∥L2((0,T );H) .

Proof. It follows from inequality (3) that at u(t) ∈ W 2
2,K((0, T ); H) inequality is true

∥∥ρ1/2A2u
∥∥2

L2((0,T ):H) ≤
∥P0u∥L2((0,T );H) ·

∥∥A2u
∥∥

L2((0,T );H). Hence we have:∥∥A2u
∥∥2

L2((0,T );H) ≤ max
t

ρ−1(t)
∥∥∥ρ1/2A2u

∥∥∥2

L2((0,T );H)
≤

≤ 1
min(α2, β2) ∥P0u∥L2((0,T );H) ·

∥∥A2u
∥∥

L2((0,T );H) .
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Here,
∥∥A2u

∥∥
L2((0,T );H) ≤ 1

min(α2,β2) ∥P0u∥L2((0,T );H). On the other hand, for any ε > 0 it follows from inequality
(3) that

∥Au′∥2
L2((0,T );H) +

∥∥∥ρ1/2A2u
∥∥∥2

L2((0,T );H)
≤
∥∥∥ρ1/2A2u

∥∥∥
L2((0,T );H)

∥∥∥ρ−1/2P0u
∥∥∥

L2((0,T );H)
≤

≤ ε

2

∥∥∥ρ1/2A2u
∥∥∥2

L2((0,T );H)
+ 1

2ε

∥∥∥ρ−1/2P0u
∥∥∥2

L2((0,T );H)
.

Assume that ε = 2, we get

∥Au′∥2
L2((0,T );H) ≤ 1

4

∥∥∥ρ−1/2P0u
∥∥∥2

L2((0,T );H)
,

or
∥Au′∥L2((0,T );H) ≤ 1

2 min(α, β) ∥P0u∥L2((0,T );H) .

Investigation proven.

3|Main Results
Theorem 1. Let the conditions of lemma 1)–3) be satisfied. Then the operator P0 is isomorphic to
spaceW2

2
,K((0, T ); H) on L2((0, T ); H).

Proof. It follows from Corollary 1 that the equation KerP0 = {0}. Let’s prove that the equation P0u = f Let
us prove that the equation has a solution at any f(t) ∈ L2((0, T ); H). It is easy to see that the function

α1(t) = 1
2π

∫ +∞

−∞
(ξ2E + α2A2)−1

∫ T

0
f(s)eiξ(t−s)dsdξ

and

β1(t) = 1
2π

∫ +∞

−∞
(ξ2E + β2A2)−1

∫ T

0
f(s)eiξ(t−s)dsdξ

belong to the space W 2
2 (R; H) and satisfy the equations u′′ + α2A2u = f and −u′′ + β2A2u = f in (0, T ) almost

everywhere, respectively. Then it is obvious that α1(t), β1(t) ∈W 2
2 ((0, T ); H) and by the trace theorem α

(i)
1 (0),

β
(i)
1 (0), α

(i)
1 (T ),β(i)

1 (T ) ∈ H2−j−1/2 (j = 0, 1) [2]. We will search for solutions of equation P0u = f in form

u(t) =
{

α1(t) + e−αtAφ1 + eα(t−t0)Aφ2, t ∈ (0, t0) ,
β1(t) + eβ(t−T )φ3 + eβ(t0−t)Aφ4, t ∈ (t0, T ) ,

where vectors φj ∈ H3/2 , j = 1, 4 belong to the definition. From condition (2) and from the equations
u(t0 − 0) = u(t0 + 0),u′(t0 − 0) = u′(t0 + 0) (u ∈ W 2

2,K((0, T ); H) relatively φj , j = 1, 4, we obtain system
of equations. Considering Corollary 1, from these conditions the vectors φj , j = 1, 4 are defined. Thus,
u ∈ W 2

2,K((0, T ); H) and P0u = f . In other hand, ∥P0u∥L2((0,T );H) ≤
√

2 ∥u∥W 2
2 ((0,T );H). Then the statement of

the theorem follows from Banach’s theorem on the inverse operator. The theorem is proved.

Now let us prove the main result of the paper.

Theorem 2. Let conditions 1)–4) be satisfied, ReA−1K ≥ 0 in H1/2 and there is an inequality

q(α, β) = 1
2 min(α, β) ∥B1∥ + 1

min(α2, β2) ∥B2∥ < 1.

Then the problem (1), (2) is regularly solvable.

Proof. Let us write the problem (1), (2) in the form of the equation Pu = P0u + P1u, u ∈ W 2
2,K((0, T ); H),

f ∈ L2((0, T ); H). After replacement P0u = ω we get equation ω +P1P −1
0 ω = f in space L2((0, T ); H). Applying

Corollary 2, we obtain that for any ω ∈ L2((0, T ); H).∥∥P1P −1
0 ω

∥∥
L2((0,T );H) = ∥P1u∥L2((0,T );H) ≤ ∥B1∥ ∥Au′∥L2((0,T );H) +

+ ∥B2∥
∥∥A2u

∥∥
L2((0,T );H) ≤ q(α, β) ∥P0u∥L2((0,T );H) = q(α, β) ∥ ω ∥L2((0,T ):H) .



Since q(α, β) < 1, then E + P1P0
−1 convert in the space and u = P0

−1(E + P1P0
−1)−1f . Hence, it follows that

∥ u ∥W2
2((0,T );H) ≤ const ∥ f ∥L2((0,T );H). The theorem is proved.

Corollary 3. Let conditions 1) and 4) be satisfied and inequality holds 2
1 ∥B1∥ + ∥B2∥ < 1. Then equestion

−u′′(t) + A2u(t) + A1u′(t) + A2u(t) = f(t), t ∈ (0, T ),

u′(0) = 0, u′(T ) = 0
regularly solvable.

The proof follows from Theorem 2 when ρ(t) ≡ 1 and K = 0. This issue was examined in work [5].

4|Conclusion
In this study, we have addressed the regular solvability of boundary value problems for a class of second-order
elliptic operator-differential equations with discontinuous coefficients and operator-type boundary conditions in
a Hilbert space framework. These types of problems arise in many theoretical and applied contexts, especially
where the physical systems modeled involve media with piecewise properties or require the inclusion of abstract
boundary interactions. The central contribution of the paper is the establishment of sufficient conditions under
which such boundary value problems are not only solvable but regularly solvable. That is, for each admissible
input function, a unique solution exists within a specifically defined function space, and this solution depends
continuously on the input data. This guarantees the stability and robustness of solutions, which are essential for
both theoretical analysis and computational implementation. Our results generalize and extend previous work
in the field by accommodating discontinuous operator coefficients and more general boundary operators that
act between different levels of Hilbert space scales. The proofs rely on the application of advanced tools from
functional analysis, including spectral theory, the theory of bounded linear operators, and the Banach inverse
operator theorem. In particular, we derived and utilized operator inequalities that ensure the invertibility of the
solution operator and provided energy-type estimates that quantify the dependence of the solution norm on the
norm of the input function. Furthermore, by reformulating the original boundary value problem into a system
involving auxiliary operators and establishing the isomorphism of the principal part, we created a foundation for
future research. Our approach can be adapted to more complex systems, including those with time dependence,
nonlinear perturbations, or variable domain geometries.

In conclusion, the findings of this article contribute significantly to the broader theory of operator-differential
equations, providing new pathways for analyzing boundary value problems with complex structural and spectral
characteristics. This work not only reinforces the applicability of Hilbert space methods in differential equations
but also lays the groundwork for future studies aimed at exploring numerical methods, control problems, and
real-world applications in engineering and physics.
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